• iot systems

EasyCool Инструкция по настройке и эксплуатации

1. Основные технические данные

iOT SYSTEMS®

Назначение

Контроллер ЕС-НА-КNX-01 (далее Контроллер) предназначен для управления бытовыми кондиционерами типа Split разных производителей брендов через коммуникационный интерфейс KNX. Контроллер подключается к внутреннему блоку кондиционера с помощью кабеля определенного производителем кондиционера типа через специальный интерфейсный разъем на плате управления кондиционера. Управление работой кондиционера (температурный режим, скорость вентилятора, направление воздушного потока и т.д.) осуществляется путем подачи в плату управления внутреннего блока кондиционера соответствующих управляющих команд, формируемых Контроллером в соответствии с командами управления, поступающими от управляющего устройства по сети KNX.

1. Основные технические данные

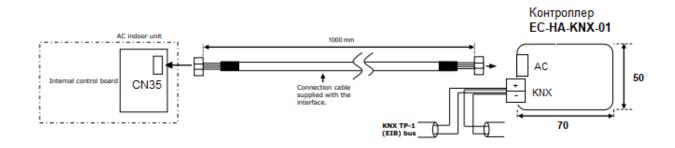
Основные функции Контроллера

- включение/выключение кондиционера;
- изменение режима работы кондиционера (авто, охлаждение, нагрев, вентиляция, осушение);
- изменение температуры (17 30 градусов Цельсия);
- изменение скорости вентилятора (минимальная, средняя, максимальная, авто);
- установка режима повышенной мощности/экономичного режима;
- изменение направления воздушного потока (вертикальное, горизонтальное, 3D);
- передача в сеть KNX сигналов состояния кондиционера (обратная связь).

Состав изделия

В состав изделия входит:

- Контроллер (готовое изделие с интерфейсными разъёмами);
- кабель подключения;
- паспорт изделия.


1.2. Устройство и принцип работы

Принцип работы

Контроллер подключается к внутреннему блоку кондиционера с помощью приложенного интерфейсного кабеля в соответствии со схемой. Второй интерфейсный разъем Контроллера подключается к сети KNX. Питание Контроллера осуществляется от внутреннего блока кондиционера.

При подаче напряжения питания на Контроллер, он стартует в режиме точки доступа с фиксированным IP- адресом и реализует технологию Captive portal, которая используется для конфигурирования Контроллера в сети KNX. Процедура конфигурации представлена в соответствующем разделе ниже. По завершении конфигурации у пользователя появляется доступный для управления по сети KNX контроллер.

1.3. Технические параметры

O IOT SYSTEMS*

Параметр	Значение	
Номинальное напряжение питания	5 - 15 B	
Номинальный ток потребления	0.08 A	
Периферийная шина 1	UART	
Периферийная шина 2	KNX	
WiFi протоколы	802.11 b/g/n	
Частотный диапазон	2,4ГГц-2,5ГГц (2400М- 2483,5М)	
WiFi режим	программная точка доступа	
Индикация режимов работы	Светодиод	
Диапазон рабочих температур	+1+45°C	
Размеры корпуса	70х50х25 мм	

Требования безопасности

При монтаже и эксплуатации соблюдайте общие правила электробезопасности при пользовании электроприборами. Все работы по монтажу и обслуживанию Контроллера производятся только при отключенном электропитании.

В части требований техники безопасности изделие соответствует нормам ГОСТ 12.2.007.0-75.

По способу защиты человека устройства должны относиться к классу 0 по ГОСТ 12.2.007.0-75.

Условия эксплуатации

При эксплуатации контроллера необходимо обеспечить следующие условия:

- температура окружающей среды: +1... +45 °C
- механические воздействия: по ГОСТ 22261-94.

Подготовка к работе

Прежде чем устанавливать и использовать Контроллер внимательно прочитайте настоящую инструкцию.

Установка

- Подготовьте входящий в комплект поставки кабель для соединения Контроллера с внутренним блоком кондиционера. В некоторых моделях кондиционеров соединительный кабель входит в состав внутреннего блока кондиционера.
- Снимите или поднимите вверх переднюю панель внутреннего блока кондиционера (Снятие передней панели описано в инструкции по монтажу кондиционера).
- Откройте боковую крышку электронного блока.
- Вставьте разъем соединительного кабеля Контроллера в ответную часть расположенного на плате управления разъема CN35, как это показано на рисунке 3.
- Расположенный на другом конце кабеля разъем соедините с ответной частью разъема Контроллера.
- Закройте боковую крышку электронного блока.
- Установите переднюю панель на свое место.
- Расположите Контроллер в свободном пространстве вокруг наружного блока.

Как пример на фото внутренний блок кондиционирования производителя HAIER.

*На данный момент в стандартную комплектацию

EasyCool HAIER входит кабель USB A (папа) - UART.

Для подключения к блоку кондиционера потребуется кабель

USB A (мама) - CN34, Haier A0010402992.

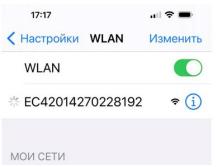
Приобретается отдельно.

O IOT SYSTEMS*

Настройка и эксплуатация Контроллера

Контроллер не является сертифицированным устройством KNX, а лишь совместим с сетью стандарта KNX, для его настройки не требуется использование программного обеспечения ETS.

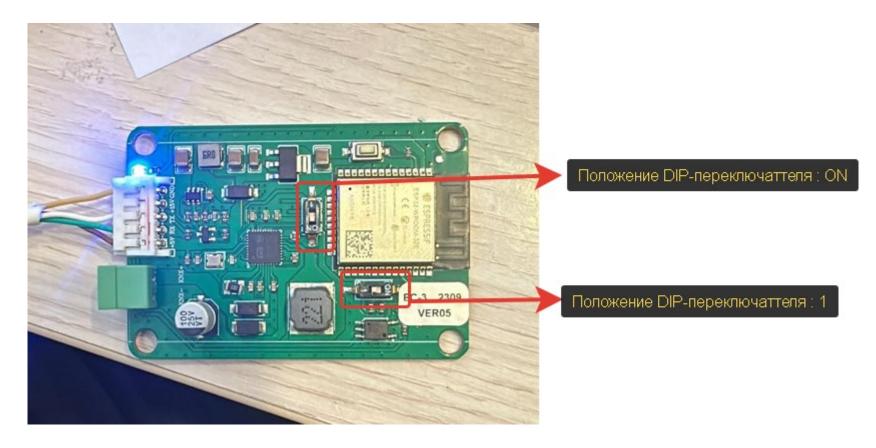
Включите питание кондиционера и убедитесь, что сразу после включения световой индикатор Контроллера загорится.


Светодиодный индикатор означает вход контроллера в режим программирования.

Контроллер можно ввести в режим программирования без отключения питания кондиционера. Нужно нажать на кнопку программирования и дождаться загорания светодиодного индикатора. (Контроллер будет в режиме программирования 3 минуты.)

Для дальнейшей настройки Контроллера может использоваться смартфон или компьютер с доступом к WiFi. При использовании смартфона надо зайти в его настройки, открыть опцию выбора WiFi сетей, найти в перечне доступных WiFi сетей сеть с названием ЕС..., где многозначное целое число после символов ЕС представляет собой уникальный ID Контроллера. Выберите эту сеть для подключения, после чего произойдет автоматическое подключение смартфона (компьютера) к указанной сети. На экране смартфона (в веб-браузере компьютера) откроется конфигурационный WEB интерфейс Контроллера.

На скриншотах пример настройки Контроллера при помощи смартфона.



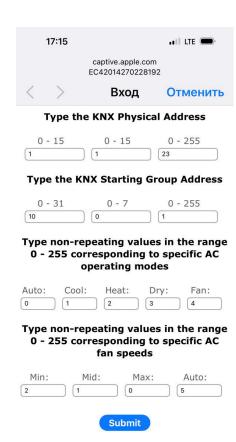
O IOT SYSTEMS*

Сервисная информация.

Корректное положение DIP-переключателей на плате контроллера.

iOT SYSTEMS*

В соответствующие поля ввода необходимо ввести значения, необходимые для функционирования Контроллера:

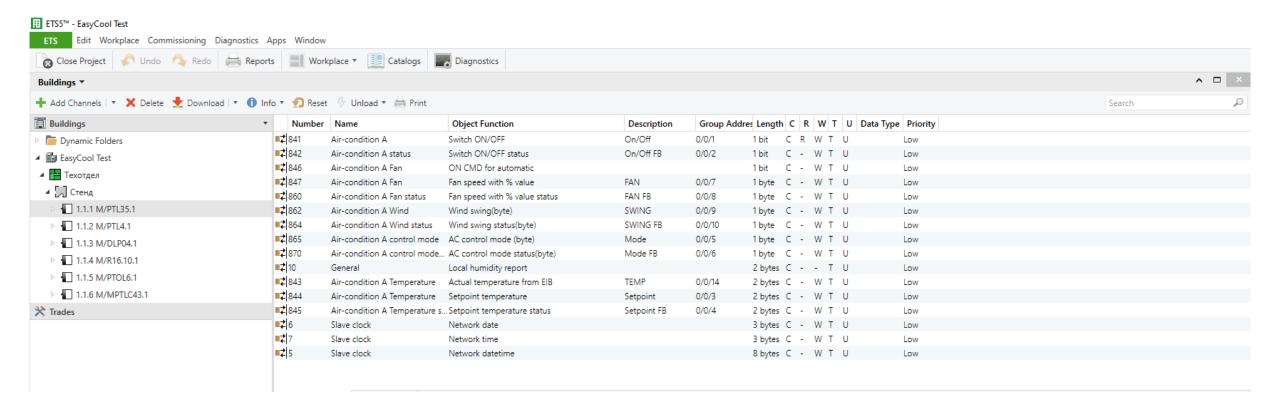

- физический KNX адрес Контроллера в формате 1/1/23;
- начальный групповой адрес Контроллера в формате 10/0/1;
- неповторяющиеся целочисленные значения, используемые для кодирования режимов работы кондиционера (авто, охлаждение, нагрев, вентиляция, осущение) в прошивке Контроллера;
- неповторяющиеся целочисленные значения, используемые для кодирования скоростей вентилятора (минимальная, средняя, максимальная, авто) в прошивке Контроллера.

После ввода требуемых значений надо нажать кнопку «Submit», параметры настройки сохранятся в энергонезависимой памяти Контроллера и будут актуальны до следующей процедуры конфигурации.

Перевод Контроллера в режим конфигурации возможен путем обесточивания и повторной подачи питания на Контроллер, или путем нажатия кнопки Reset на плате Контроллера. Контроллер находится в режиме конфигурации в течение 3х минут, о чем свидетельствует непрерывное свечение светодиода Контроллера. При выходе из режима конфигурации индикационный светодиод гаснет.

Контроллер сконфигурирован и готов к работе в сети KNX.

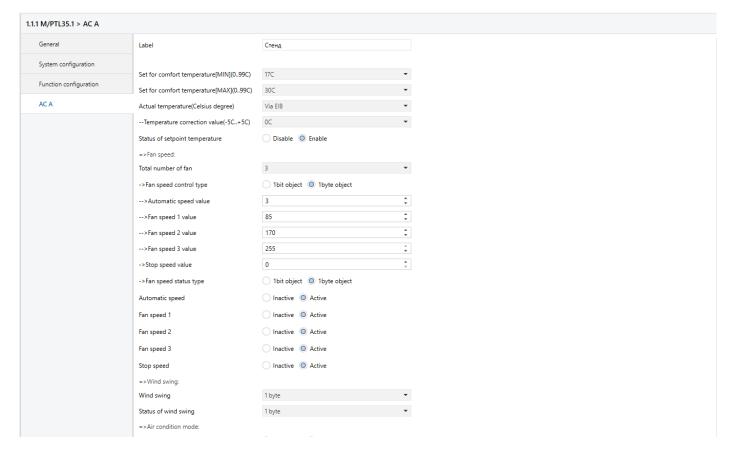
В таблице далее представлен перечень коммуникационных объектов, используемых в контроллере и пример настроек в ETS.


O IOT SYSTEMS

Функция	Тип объекта	Групповой адрес
Включение/выключение	1 бит	Начальный групповой адрес
Обратная связь состояния вкл/выкл		Начальный групповой адрес + 1
Установка температуры	2 байта	Начальный групповой адрес + 2
Обратная связь установленной температуры	2 байта	Начальный групповой адрес + 3
Выбор режима работы	1 байт	Начальный групповой адрес + 4
Обратная связь режима работы		Начальный групповой адрес + 5
Выбор скорости вентилятора	1 байт	Начальный групповой адрес + 6
Обратная связь установленной скорости	1 байт	Начальный групповой адрес + 7
Управление направлением потока	1 байт	Начальный групповой адрес + 8
Обратная связь выбранного направления потока	1 байт	Начальный групповой адрес + 9
Выбор режима повышенной мощности/экономичного режима	1 байт	Начальный групповой адрес + 10
Обратная связь дополнительных режимов	1 байт	Начальный групповой адрес + 11
Температура в помещении	2 байта	Начальный групповой адрес + 13
Код ошибки	1 байт	Начальный групповой адрес + 14

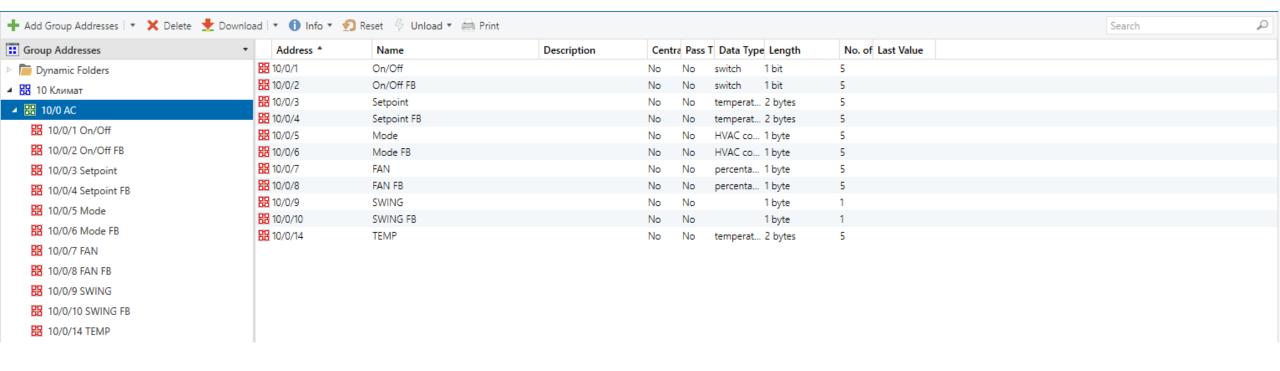
O IOT SYSTEMS*

Пример настройки контроллера EasyCool совместно с панелью управления HDL M/PTL35.1


Настройки панели управления:

O IOT SYSTEMS*

Пример настройки контроллера EasyCool совместно с панелью управления HDL M/PTL35.1


Настройки панели управления:

O IOT SYSTEMS*

Пример настройки контроллера EasyCool совместно с панелью управления HDL M/PTL35.1

Пример групповых адресов:

O IOT SYSTEMS®

Пример настройки контроллера EasyCool совместно с панелью управления HDL M/PTL35.1

Настройки панели управления:

=>Air condition mode:		
->Control mode type	1bit object 1byte object	
->Automatic heating/cooling value	0	* v
->Only cooling value	3	*
->Only heating value	1	*
->Only dehumidification value	14	*
->Only fan value	9	*
->Status of mode type	1bit object 1 byte object	
Automatic heating/cooling	☐ Inactive ☐ Active	
Only cooling	O Inactive O Active	
Only heating	○ Inactive ○ Active	
Only dehumidification	○ Inactive ○ Active	
Only fan	○ Inactive ○ Active	
=>Air condition status:		
The status operation after power on	O Unchange Recovery	
The status operation after AC switch ON	O Unchange Recovery	
=>Output control:		
Output control the relay actuator	Disable	

3. Техническое обслуживание, хранение, транспортировка

Техническое обслуживание

Изделие не требует проведения регламентных работ. Профилактика ограничена периодическим контрольным осмотром и очисткой от пыли.

O IOT SYSTEMS

Хранение и консервация

Хранение изделия должно производиться в упаковке предприятия-изготовителя в складских отапливаемых помещениях в соответствии с ГОСТ В 9.0030 и ГОСТ 15190 до одного года.

Условия хранения:

- температура окружающей среды от -20 до +85 °C;
- относительная влажность 80% при температуре +25 °C;
- атмосферное давление от 84 до 107 кПа (630...800 мм рт.ст.).

Правила хранения:

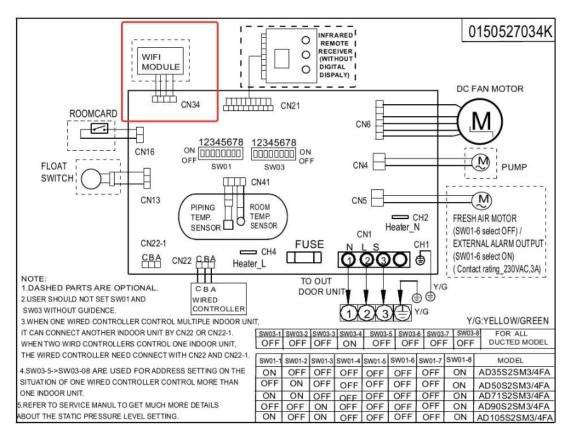
- хранение производится в упаковке предприятия-изготовителя со сроком хранения до 1 года;
- упаковке для хранения подвергаются только исправные и полностью укомплектованные аппаратные средства;
- хранение производится на полках или стеллажах;
- по истечении срока хранения изделие должно быть распаковано и проверено.

Консервация изделия не предусматривается в течение всего срока службы.

Транспортирование

Транспортирование изделия производится в упаковке предприятия-изготовителя.

При транспортировании должно быть обеспечено крепление упаковки в транспортном средстве.


Условия транспортирования в части воздействия климатических факторов должно быть максимально приближенным к условиям хранения в складских помещениях.

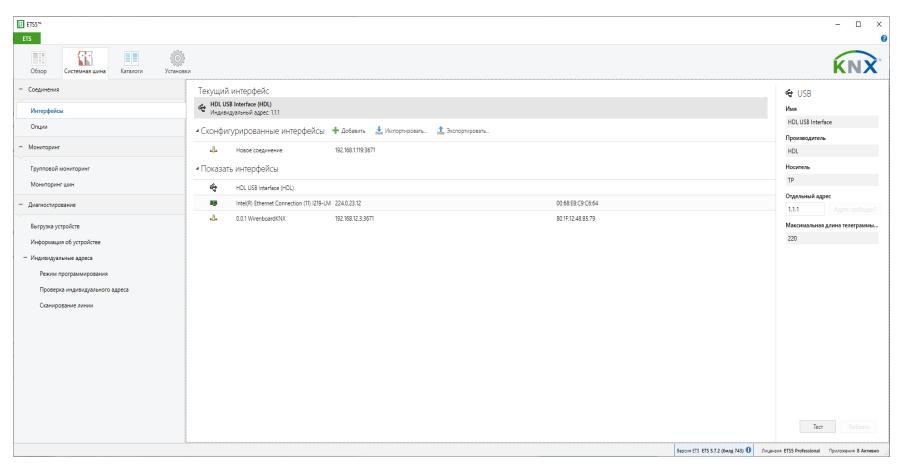
3. Совместимость

Поддерживаются все модели бытовых кондиционеров типа Split на разных производителей и брендов, например HAIER, Midea, Daikin и тд., которые имеют разъём USB, CN34, CN35.

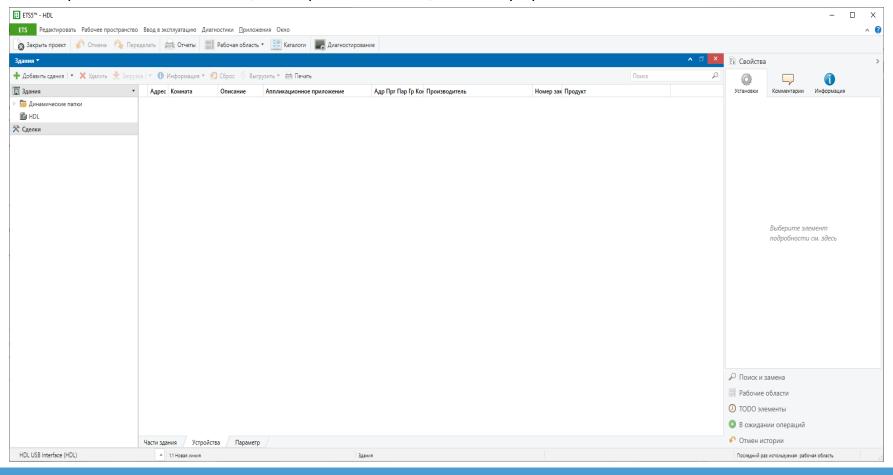
Пример соответствующего разъёма для одной из моделей HAIER указан на скриншоте.

Тестирование работы контроллера EasyCool с кондиционером Haier. Используемое оборудование при тестировании:

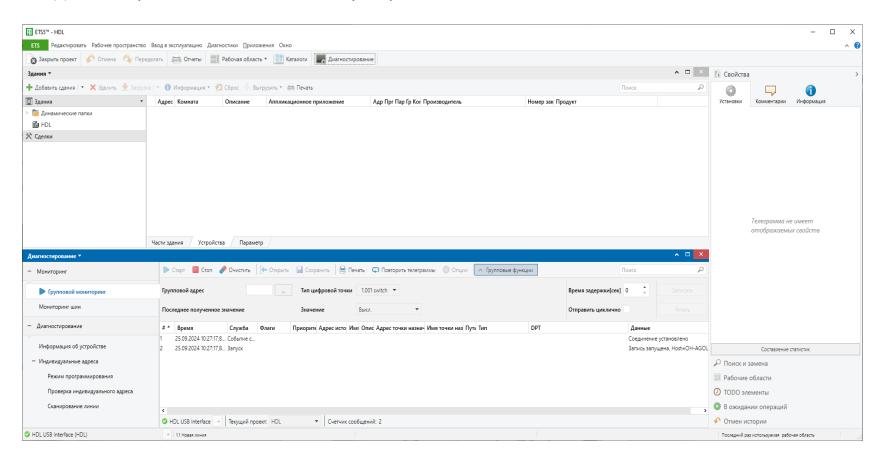
- Haier AS25NHPHRA,
- USB-KNX шлюз HDL-M/USB.1
- Персональный компьютер и программа KNX ETS.


Тестовый стенд: блок питания, шлюз, контроллер, кондиционер.

IOT SYSTEMS®


o iot systems*

В ETS в окне Системная шина определяем текущий интерфейс


O IOT SYSTEMS®

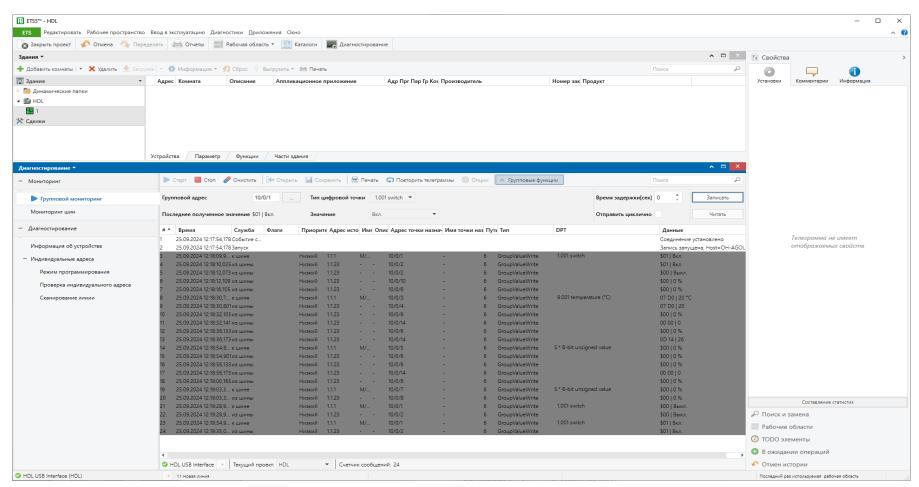
Создаем новый проект с названием HDL, в котором нет ничего, никаких устройств.

O IOT SYSTEMS

В ETS запускаем Диагностирование, нажимаем кнопку Старт

Далее последовательно вводим команды:

Вкл Тип цифровой точки 1.001 switch ▼ Время задержки[сек] 0 Групповой адрес Записать Последнее полученное значение \$01 | Вкл. Читать Значение Отправить циклично Установка температуры 20 оС Групповой адрес 10/0/3 Тип цифровой точки 9.001 temperature (°C) ▼ Время задержки[сек] 0 Записать 20 Последнее полученное значение \$01 | Вкл. Отправить циклично Читать Значение Установка режима 0 (Auto) Тип цифровой точки 5.* 8-bit unsigned value ▼ 10/0/5 Групповой адрес Время задержки[сек] 0 Записать Последнее полученное значение \$01 | Вкл. Значение 000 использовать шестнадцатеричные значения Отправить циклично Читать


Установка скорости потока 0 (max)

Групповой адрес 10/0/7	Тип цифровой точки	5.* 8-bit unsigned value ▼		Время задержки[сек] 0 💂	Записать
Последнее полученное значение \$01 Вкл.	Значение	000	использовать шестнадцатеричные значения	Отправить циклично	Читать
Выкл					
Групповой адрес 10/0/1	Тип цифровой точки	1.001 switch ▼		Время задержки[сек] 0 💂	Записать
Последнее полученное значение \$01 Вкл.	Значение	Выкл. ▼		Отправить циклично	Читать
Вкл					
Групповой адрес 10/0/1	Тип цифровой точки	1.001 switch ▼		Время задержки[сек] 0 🗘	Записать
Последнее полученное значение \$01 Вкл.	Значение	Вкл. ▼		Отправить циклично	Читать

Кондиционер включается и отрабатывает все команды.

Между отправками команд стоит выждать несколько секунд, чтобы они записались в Easycool

Кондиционер включается и отрабатывает все команды.

Порядок подключения для корректной инициализации контроллера:

- 1) Подключить контроллер к внутреннему блоку. Включить кондиционер.
- 2) И только потом подключить шину KNX к контроллеру.
- 3) Произвести настройки и тестирование.

Если возникла ошибка инициализации (контроллер не управляет кондиционером), то проделать следующие действия: после нового включения питания кондиционера надо нажать кнопку Reset контроллера, чтобы обеспечить его правильную инициализацию.

• iot systems